
GPU Offloading in Spark Rapids: Investigating
Compression, Batching, Filtering, and Reordering

Nikhil Pavan Kanaka
kanaka.3@osu.edu

Abstract—This project aims to optimize data movement be-
tween the CPU and GPU in Spark by investigating various
techniques and evaluating their effectiveness under different
scenarios. The primary objective is to identify the optimal
configuration of compression, batching, data filtering, and re-
ordering techniques to minimize the total data transfer time
while maintaining performance, based on the specific use case.
To achieve this objective, research will be conducted through
simulation and experimentation, starting with a comprehensive
literature review to identify the most promising techniques. The
RAPIDS API will be utilized to implement and evaluate these
techniques, and experiments will be conducted using various data
sets and workloads to provide a comprehensive evaluation. The
expected outcome of the project is to provide valuable insights
into optimizing data transfers.

Index Terms—Spark, GPU, Offloading, Rapids

I. INTRODUCTION

Apache Spark [4] is an open-source distributed computing
system designed to process and analyze large-scale data sets.
It provides a unified analytics engine that supports various
data processing workloads. One of the key features that sets
Spark apart is its in-memory data processing capability. Unlike
traditional disk-based processing frameworks, Spark leverages
the power of main memory to store and manipulate data
in a distributed fashion. By keeping the data in memory,
Spark significantly reduces the data access latency, leading to
substantial performance improvements. In recent years, Spark
has embraced GPU acceleration to further enhance its perfor-
mance and scalability. By leveraging the computational power
of Graphics Processing Units, Spark can accelerate compu-
tations and achieve significant speedups for data-intensive
workloads. The integration of GPU acceleration libraries, such
as RAPIDS, into Spark has opened up new opportunities for
processing big data in main memory and on GPUs. Spark
RAPIDS [1] is a collaboration between Apache Spark and
NVIDIA that aims to provide high-performance in-memory
data processing and analytics on GPUs. It combines the
distributed computing capabilities of Spark with the power of
GPU acceleration, enabling efficient and scalable processing of
big data workloads. Spark RAPIDS’ performance superiority
over traditional CPU-based Spark implementations can be
attributed to its ability to leverage GPU parallelism, enhanced
memory bandwidth, optimized algorithms, and seamless in-
tegration with Spark. By leveraging the parallel processing
capabilities of GPUs and minimizing data movement overhead,
Spark RAPIDS aims to achieve faster and more efficient data
processing and analytics. Data transfers between the CPU and

GPU in Spark RAPIDS occur through a bus, such as PCIe or
NVLink, with the CPU sending data to the GPU for processing
and receiving the results back. However, these transfers can
lead to long transfer times and decreased performance due to
the large amounts of data involved. Improving the performance
of Spark RAPIDS requires addressing the input/output (IO)
bottleneck, which refers to the data transfer between the CPU
and GPU. The IO bottleneck can significantly impact per-
formance by causing delays, adding overhead, and hindering
system efficiency. Therefore, it is crucial to minimize data
movement between the CPU and GPU. To tackle the IO bot-
tleneck, various techniques are employed in Spark RAPIDS,
including compression, batching, data filtering, and reordering.
Compression reduces data size before the transfer, minimizing
transfer time and CPU overhead. Batching combines multiple
transfers into a single larger transfer to reduce overhead. Data
filtering eliminates unnecessary data prior to transfer, reducing
the amount of data transferred. Data reordering optimizes data
placement to minimize CPU-GPU movement. By leveraging
these techniques, Spark RAPIDS aims to minimize total data
transfer time while maintaining high performance.

A. Compression

Compression techniques [2] are employed to reduce the size
of the data before transferring it from the CPU to the GPU.
By compressing the data, the amount of data to be transferred
is reduced, which in turn minimizes the transfer time and
CPU overhead. Spark RAPIDS utilizes various compression
algorithms to compress the data before it is sent to the GPU.
Upon arrival at the GPU, the compressed data is decompressed
for further processing.

1) Snappy: Fast and efficient compression algorithm opti-
mized for speed. It achieves compression by replacing repeated
sequences of bytes with shorter representations. Snappy of-
fers good compression ratios and fast decompression speeds,
making it suitable for scenarios where a balance between
compression efficiency and speed is required.

2) Gzip: Widely used compression algorithm that provides
high compression ratios. It utilizes the DEFLATE algorithm,
which combines LZ77-based compression with Huffman cod-
ing. Gzip achieves higher compression ratios than Snappy but
can have slower compression and decompression speeds.

3) LZO: Compression algorithm designed for high-speed
data compression and decompression. It emphasizes decom-
pression speed over compression ratios. LZO achieves fast



speeds by using a dictionary-based compression approach
combined with byte-level encoding.

4) Brotli: Modern compression algorithm developed by
Google. It offers high compression ratios and is particularly
effective for compressing text-based data. Brotli utilizes a
combination of LZ77-based compression, context modeling,
and Huffman coding techniques.

5) LZ4: Compression algorithm optimized for high-speed
compression and decompression. It provides fast compression
and decompression speeds, making it suitable for scenar-
ios where real-time or low-latency processing is required.
LZ4 achieves compression by using a sliding window and
dictionary-based approach.

6) Zstd: Compression algorithm developed by Facebook. It
offers high compression ratios and provides a wide range of
compression settings to balance between speed and efficiency.
Zstd leverages a combination of entropy coding, dictionary
compression, and pattern matching techniques.

B. Batching

Batching involves combining multiple data transfers into a
single, larger transfer. Instead of performing separate transfers
for each data item, Spark groups multiple data transfers
together to create a batch. By batching the data transfers, the
overhead associated with each individual transfer is signifi-
cantly reduced, resulting in improved transfer efficiency.

1) Batch Processing: In batch processing, data is processed
in fixed-sized batches or partitions. Spark’s core processing
engine supports batch processing by default. Each batch is
treated as a separate unit of work, and the data is processed
in parallel across multiple nodes or cores.

2) Micro-batching: Micro-batching is a technique used in
Spark Structured Streaming, which combines the benefits of
both batch and streaming processing. Data is divided into
small, fixed-sized micro-batches, and each micro-batch is pro-
cessed as a batch job. This approach allows for near-real-time
processing with low-latency and fault-tolerance characteristics.
Micro-batching provides a compromise between true real-time
streaming and batch processing, enabling processing guaran-
tees and easier integration with existing batch workflows.

3) Windowed Batching: Windowed batching is used in
time-series analysis and event-based processing. It involves
dividing the data into fixed-size or time-based windows. Spark
provides window functions and operations that allow you
to define the size and sliding behavior of the windows. By
processing data within windows, you can perform batched
operations on a window of data rather than individual records.
This technique enables computations over specific time periods
or data segments, such as aggregations or calculations within
a sliding window.

4) Adaptive Batching: Adaptive batching is a dynamic
batching technique where the batch size is adjusted based
on run-time conditions or workload characteristics. Although
not explicitly provided as a built-in feature in Spark, adaptive
batching can be implemented using custom logic within the
application. For example, you can dynamically adjust the

batch size based on the available system resources, input data
rate, or computational complexity. This approach allows for
optimizing the balance between throughput and latency based
on the current workload.

C. Data Filtering

Data filtering aims to eliminate unnecessary data before
sending it to the GPU. Spark provides APIs that allow users to
filter out irrelevant or redundant data before transferring it. By
applying filtering operations such as filter, select, or drop, the
amount of data that needs to be transferred between the CPU
and GPU can be reduced. This reduction in data size leads to
faster transfer times and improved overall performance.

1) Batch Processing: In batch processing, Spark provides
a rich set of filtering capabilities. The most commonly used
technique is the filter() transformation, which allows you
to specify a predicate function that defines the filtering con-
dition. The filter() transformation applies the predicate
to each record in the data-set and retains only the records
that satisfy the condition. Spark’s filtering capabilities include
various comparison operations, logical operations, string oper-
ations, and more. These operations can be combined to create
complex filtering conditions for processing batch data.

2) Structured Streaming: In Spark Structured Streaming,
filtering is an integral part of the streaming data process-
ing pipeline. Similar to batch processing, you can use the
filter() transformation to apply filtering conditions on
the streaming data. This allows you to select or exclude
specific records based on criteria defined by the predicate.
The filtering conditions can be static or dynamic, depending
on the requirements of the streaming application. Filtering in
Structured Streaming can be performed on a continuous stream
of data, enabling real-time data reduction and extraction.

3) Windowed Filtering: Windowed filtering is a technique
used for processing data within specific time-based windows.
Spark provides window operations, such as window() or
rangeBetween(), which allow you to define time-based
or row-based windows for filtering. These operations enable
you to filter data within a sliding window, tumbling window,
or custom-defined window. Windowed filtering is particularly
useful for time-series analysis, event-based processing, or any
scenario where data needs to be filtered within specific time
intervals or data segments.

4) Partition-Level Filtering: Partition-level filtering is a
technique used to optimize data processing by selectively
reading only relevant data partitions. Spark’s partition prun-
ing feature leverages filtering conditions to determine which
partitions of data need to be accessed during the processing.
By evaluating the filtering condition against partition metadata
or statistics, Spark can skip reading unnecessary data parti-
tions, thereby reducing disk I/O and improving performance.
Partition-level filtering is especially beneficial in scenarios
where the data is partitioned based on specific criteria, such
as date, location, or any other relevant attribute.

2



D. Data Reordering

Data reordering techniques optimize the order of data trans-
fers between the CPU and GPU to minimize data move-
ment. By rearranging the data before transferring it to the
GPU, Spark aims to reduce unnecessary data shuffling and
movement during processing. Techniques such as sorting,
partitioning, or shuffling can be employed to optimize the
data layout, ensuring that the data is transferred and processed
efficiently on the GPU. This minimizes the time spent on data
movement and enhances the overall transfer time.

1) Batch Processing: In batch processing, data reordering
techniques focus on optimizing the data layout to improve data
locality and minimize data shuffling during parallel processing.
Techniques like ”partitioning” or ”sorting” can be
applied to group related data together, ensuring that data re-
siding on the same partition is processed together. Partitioning
can be based on key-value pairs, range-based partitions, or
custom partitioning functions. Sorting the data based on a
specific attribute can also help in certain scenarios, such as
optimizing join operations.

2) Streaming and Structured Streaming: In streaming ap-
plications, data reordering is often employed in windowed
operations. The data is partitioned or sorted based on the
window boundaries to ensure that all the relevant data for
a particular window is processed together. This technique
reduces the need for shuffling data across partitions during
window computations, improving overall efficiency. Addition-
ally, Spark provides operations like re-partition and coalesce
that can be used to redistribute data based on specific criteria,
facilitating better data locality and reducing unnecessary data
movement.

3) Graph Processing: In graph processing, data reordering
techniques are used to optimize the graph structure and facil-
itate efficient graph traversals and computations. Techniques
like ”graph partitioning” aim to divide the graph into
smaller sub-graphs or partitions to enable parallel processing.
Partitioning is typically based on node properties or graph
topology, ensuring that related nodes are grouped together.
This improves locality and minimizes communication over-
head during graph algorithms like PageRank or connected
component analysis.

4) Machine Learning: Data reordering in machine learning
applications focuses on optimizing the data layout for better
training and prediction performance. Techniques such as
”feature reordering” or ”data sampling” can
be employed. Feature reordering arranges the features in
a specific order based on their importance or correlation,
enabling faster convergence of machine learning algorithms.
Data sampling techniques reorganize the data to achieve a
better balance between classes or improve data distribution,
leading to more representative training sets.

By leveraging compression, batching, data filtering, and
data reordering techniques, Spark maximizes the efficiency of
CPU-GPU data transfers. These techniques collectively help

reduce data size, minimize transfer overhead, eliminate irrele-
vant data, and optimize the order of data transfers, resulting in
improved performance and faster data processing on the GPU.

II. COMPRESSION

Compression algorithms play a vital role in reducing data
movement costs. Spark’s MapReduce [3] supports various
compression and decompression algorithms called codecs.
These algorithms can be splittable or non-splittable. Splittable
algorithms split files into compressed and uncompressed data
blocks of fixed size, allowing individual decompression. Non-
splittable algorithms require serial decompression, resulting in
longer decompression time.

The choice of compression algorithm depends on factors
like data quality, codec schemas, data type, and application
type. The compression ratio, which is the ratio of compressed
data to uncompressed data size, determines the degree of
data size reduction and I/O usage. Lower compression ratios
indicate less memory and I/O usage. Compression can be
implemented at different stages, including input data, interme-
diate Map output data, and Reduce output data. Intermediate
compression of the map output reduces network usage during
the Mapreduce shuffle step. All nodes begin to communicate
with each other and collect the map output as the phase
reduces input. If the input or intermediate output of the map
phase is compressed, the framework chooses a decompression
algorithm before processing according to the file extension,
refer to Table I.

TABLE I
A SUMMARY OF COMPRESSION FORMATS

Compression format Splittable
gzip No

bzip2 Yes
snappy Yes (container file formats)

Lzo Yes (indexing algorithm)
lz4 Yes (4MC library)

zstandard Yes (4MC library)

The compression codecs used in the data storage are
all lossless, ensuring data integrity. The gzip and deflate
codecs employ the deflate algorithm, which combines lz77
and Huffman Coding. The lz77 algorithm replaces duplicate
bit positions based on their previous occurrences. Gzip and
deflate differ in the Huffman encoding phase. The splittable
compression bzip2 codec utilizes the Burrows-Wheeler text
compression and Huffman coding algorithms. It compresses
data blocks independently and allows parallel compression.
Snappy, a fast compression library, incorporates concepts from
lz77. Snappy blocks are non-splittable, but the files within
them can be split. The lzo compression algorithm is a variation
of lz77 and involves finding matches, writing unmatched literal
data, determining match lengths, and writing match tokens.
The lz4 algorithm represents compressed data files as LZ4
sequences containing tokens, literal lengths, offsets, and match
lengths. Zstandard, is an lz77-based algorithm that supports
dictionaries, employs finite-state entropy coding and Huffman
coding for entropy coding steps.

3



1) Evaluation with TPC-DS: To evaluate and compare the
performance of different compression techniques in Spark,
the TPC-DS benchmarking approach is utilized. The TPC-
DS benchmark is a widely recognized standard for testing the
performance of big data processing systems. It consists of a
set of queries that simulate real-world business intelligence
and decision support workloads. For the benchmarking pro-
cess, shuffle intensive queries are selected from the TPC-DS
benchmark suite. These queries involve a significant amount
of data shuffling, which can be particularly challenging for
compression techniques. By focusing on shuffle intensive
queries, the benchmarking aims to assess the effectiveness of
compression techniques in scenarios where data movement
and transfer play a crucial role. To ensure comprehensive
evaluation, the benchmarking is performed for different com-
binations of datasets. The datasets used in the benchmark-
ing process vary in size and complexity, reflecting realistic
data processing scenarios. By running the benchmarking on
diverse datasets, the impact of data size and computational
complexity on the performance of compression techniques can
be observed. The benchmarking results are presented using a
graph 1that illustrates the average timelines. The timelines are
represented on a normalized scale ranging from 0 to 10. Higher
values on the graph indicate higher compression ratios and
faster compression speeds. This representation enables a visual
comparison of the different compression techniques based on
their performance characteristics.

Sn
ap

py

G
zi

p

L
Z

O

B
ro

tli

L
Z

4

Z
st

d

0

2

4

6

8

10

Compression Techniques

C
om

pr
es

si
on

R
at

io
/S

pe
ed

Compression Ratio Compression Speed

Fig. 1. Comparison of Compression Techniques

Based on the results, Snappy and LZO demonstrate a
moderate compression ratio and fast compression speed. They
provide a good balance between compression efficiency and
speed. Gzip and Brotli achieve a high compression ratio but

at the cost of slower compression speeds. LZ4, on the other
hand, achieves a low compression ratio but operates at a
very fast speed. Zstd achieves a high compression ratio while
maintaining a balanced compression speed.

These results highlight the trade-offs between compres-
sion ratio and compression speed. Depending on the specific
requirements of a given application, different compression
techniques can be selected to optimize either compression
efficiency or processing speed. It’s important to note that the
suitability of a compression technique depends on factors such
as the nature of the data, available system resources, and
specific use case requirements. Therefore, it is recommended
to carefully evaluate the trade-offs and choose the compres-
sion technique that best aligns with the desired balance of
compression ratio and speed for a particular scenario.

III. BATCHING

Modifying parameters associated with batching in Spark,
such as the batch size or trigger interval, yields diverse impacts
on the performance and behavior of your Spark application.

A. Batch Size

A larger batch size can lead to increased memory consump-
tion as more data is processed together. It can also result in
higher processing latency because a larger amount of data
needs to be processed before results are available. However, it
may improve throughput if the system has enough resources
to handle larger batches efficiently.

A smaller batch size reduces memory usage and can result
in lower processing latency as smaller amounts of data are
processed at a time. It may be beneficial for applications
with strict low-latency requirements. However, frequent batch
generation can add overhead due to increased scheduling and
coordination.

B. Min Partitions

Setting a higher number of partitions can increase paral-
lelism and distribute the workload across more resources. It
can improve processing efficiency, especially when working
with large datasets. However, it may result in higher mem-
ory consumption and increased scheduling overhead. Setting
a lower number of partitions reduces memory usage and
scheduling overhead. It can be beneficial for small datasets
or applications with limited resources. However, it may limit
the level of parallelism and processing efficiency, especially
for large-scale data processing.

From Fig.2 (where batch size and execution time and
represented on a normalized scale), When the min partitions
value is low, represented by the blue line, the execution
time initially decreases as the batch size increases. This is
because smaller batch sizes allow for faster processing of each
partition. However, after a certain point, further increasing the
batch size leads to diminishing returns, and the execution time
starts to plateau or even increase slightly. This is because
larger batch sizes result in increased overhead and resource
consumption.

4



0 20 40 60 80 100
0

20

40

60

80

100

Batch Size

E
xe

cu
tio

n
Ti

m
e

Low Min Partitions
High Min Partitions

Fig. 2. Trade-off between Batch Size and Min Partitions

Comparing the low min partitions and the high min par-
titions, we can see that the red line consistently performs
better in terms of execution time. This is because higher min
partitions allow for better parallelism and workload distribu-
tion across the available resources, leading to more efficient
processing.

C. Structured Streaming

In Structured Streaming, there are specific parameters that
are applicable and used for configuring the behavior of jobs.

1) Trigger Interval: A longer trigger interval means fewer
micro-batches are generated over time. This reduces the
frequency of processing and may lead to higher processing
latency. It can be useful when dealing with slower data streams
or when there is no strict real-time processing requirement. A
shorter trigger interval increases the frequency of batch gen-
eration and reduces processing latency. It allows for near-real-
time processing with low-latency characteristics. However, it
may put more pressure on system resources and increase
scheduling overhead.

2) Max Records Per Trigger: Allowing a higher number of
records per trigger can increase the batch size and potentially
improve processing efficiency. It reduces the overhead of initi-
ating new micro-batches. However, it may increase processing
latency as more data needs to be processed before results are
available. Limiting the number of records per trigger reduces
the batch size and can lead to lower processing latency. It can
be beneficial for applications that require faster processing
or have memory constraints. However, frequent micro-batch
generation may introduce additional scheduling overhead.

3) Max Files Per Trigger: Allowing a higher number of
files per trigger increases the batch size and reduces the over-
head of processing individual files. It can improve processing
efficiency, especially when dealing with large files. However,
it may increase processing latency as more data needs to be
processed before results are available. Limiting the number of

files per trigger reduces the batch size and can lead to lower
processing latency. It can be useful when dealing with small
files or applications that require faster processing. However,
it may introduce additional overhead due to more frequent
micro-batch generation.

The impact of configuring these parameters to low or high
values depends on the specific workload, data characteristics,
and system resources. It’s important to consider the trade-offs
between latency, throughput, and resource utilization when
adjusting these parameters. Additionally, it’s worth noting that
configuring these parameters too low or too high can lead to
resource contention, out-of-memory errors, or reduced pro-
cessing efficiency. Therefore, it’s essential to monitor system
resources, such as memory and CPU utilization, and adjust
the parameters accordingly to ensure optimal performance and
stability of your Spark application.

IV. DATA FILTERING

Data filtering plays a crucial role in optimizing data process-
ing by eliminating irrelevant or redundant data. Parameters
such as filter conditions and operations like select or drop
enable users to define specific criteria for data filtering.

A. Predicate Pushdown

Allows Spark to push filtering predicates to the underlying
data sources, such as Parquet or ORC files. This means that
filtering operations can be performed directly within the data
source, reducing the amount of data that needs to be read
into Spark. Predicate pushdown depends on the capabilities of
the underlying data source. Not all data sources may support
predicate pushdown, so it might not always be applicable.
Additionally, pushing down predicates may result in increased
complexity in terms of managing and optimizing queries,
especially when working with multiple data sources.

B. Filter Pushdown

Specifically applies to Parquet and ORC files in Spark. It
enables Spark to push filtering predicates down to the data
source during the data read process, reducing the amount of
data that needs to be read into Spark for further processing.
Filter pushdown is similar to predicate pushdown, where it
depends on the capabilities and compatibility of the underlying
data source. Not all data sources may support filter pushdown,
and enabling it may require additional configuration or setup
steps.

C. Partition Pruning

Technique that leverages filtering conditions to skip un-
necessary data partitions during query execution. Spark eval-
uates the filtering conditions against partition metadata or
statistics to determine which partitions need to be accessed,
reducing the amount of data read from disk and improving
query performance. Partition pruning works well when data
is properly partitioned and statistics are collected and up-
to-date. However, if partition metadata or statistics are not
accurate or unavailable, partition pruning may not be effective.

5



Additionally, partition pruning adds an extra overhead during
query planning and execution, as Spark needs to evaluate and
process partition information.

D. Data Source Optimizations

Configuring specific properties or options provided by the
underlying data source to optimize filtering operations. This
could include options like pushdownPredicate in JDBC
connections or specific configuration properties for other data
sources. Some data sources may provide extensive optimiza-
tion options, while others may have limited support. It requires
understanding the data source’s capabilities and experimenting
with different configurations to achieve the desired perfor-
mance improvements.

E. Caching

Caching allows you to persist a DataFrame or RDD in
memory, which can improve the performance of repetitive or
iterative operations. When a cached dataset is accessed, Spark
can read the data directly from memory instead of recomputing
it, resulting in faster processing. Caching requires sufficient
memory resources to store the cached data. If the dataset is
too large to fit in memory, caching may lead to increased
memory pressure and potential performance degradation.

When multiple operations are performed on the same in-
termediate data, caching allows for quick retrieval of the next
result. If the intermediate data is not cached or a failure occurs
on a node holding the cache, Spark reconstructs the data using
lineage, which records the procedure for generating the data.
The reconstruction task only instantiates the partition of the
lost cache.

Intermediate data can be explicitly stored in memory or
disk. When stored on disk, the data is serialized, with the
default serialization method being Java serialization. However,
Java serialization can be slow and result in large serialization
formats for many classes. Alternatively, the faster Kryo seri-
alization can be chosen, but it requires registering the classes
to be serialized in the user’s program.

The storage level determines whether the data is stored
in memory-only, disk-only, or a combination of both. By
default, RDDs are cached in memory-only, while dataFrames
are cached in memory and disk. The Executor’s memory
is divided into ExecutionMemory and StorageMemory by
the MemoryManager. ExecutionMemory is used for process-
ing intermediate data, while StorageMemory, managed by
the BlockManager, stores the intermediate data partitions as
blocks. This means that StorageMemory is utilized when
caching intermediate data in memory.

Several storage levels can be specified for intermediate data
caching, each with its own behavior:

1) NONE (NOCACHE): Does not cache intermediate data
at all. The data is discarded immediately after use, requiring
its regeneration when referenced again.

2) MEMORY ONLY: Holds the intermediate data cache in
memory-only. When caching is performed, the BlockManager
reserves a required amount of memory in StorageMemory

through the MemoryStore interface and saves each partition
of the intermediate data as a block. There is also a variant
called MEMORY ONLY SER, which serializes the data to
occupy less memory space.

3) OFF HEAP: Stores the intermediate data cache in off-
heap memory. The partitions are serialized in memory by
the BlockManager and stored in off-heap memory via the
MemoryStore interface. This approach reduces the impact of
garbage collection.

4) DISK ONLY: Stores the intermediate data cache on
a local disk. The BlockManager serializes the partitions in
memory and stores them using the DiskStore interface.

5) MEMORY AND DISK: Combines memory and disk for
caching intermediate data. It attempts to use memory primarily
and stores the data as blocks in StorageMemory. However, if
the data does not fit in memory, the BlockManager moves
some old blocks to disk, following the Least Recently Used
(LRU) algorithm, to free up space for new blocks. When
accessing the intermediate data stored on disk, the BlockMan-
ager checks the availability of space in StorageMemory, and if
possible, it reads the blocks from disk and puts them back into
StorageMemory. The key advantage of this approach is that
it efficiently utilizes both memory and disk without requiring
users to explicitly choose one. By leveraging intermediate data
caching and selecting an appropriate storage level, Spark can
enhance performance, reduce recomputation, and provide fault
tolerance in case of failures.

Points to consider while selecting the caching strategy and
storage level based on specific requirements [5]:

1) Performance degradation occurs when using disk in
intermediate data caching, but the performance of disk
is less likely to be a bottleneck due to the buffer cache
of the operating system. Serialization is often the main
bottleneck, especially with RDDs and the standard Java
serialization.

2) When using memory-only caching, RDDs are faster
than DataFrames because RDDs skip the serialization
process, while DataFrames perform encoding. However,
when storing the cache on disk or off-heap memory,
encoding of DataFrames is faster than serialization of
RDDs.

3) Disk performance becomes evident when many tasks are
executed in parallel on each worker node, simultane-
ously performing caching operations. HDDs with larger
capacity are often more cost-effective in such scenarios.
Improvements in Spark’s serialization performance are
highly anticipated.

4) DataFrame requires more execution memory than RDD
for encoding and decoding operations, as observed in a
benchmark failure due to out-of-memory (OOM) error
in the same environment.

5) Memory and disk mode, which selectively uses both
memory and disk, may have poor performance com-
pared to disk-only caching when memory capacity is
insufficient. However, the issue can be mitigated by
suppressing re-caching. An opportunity exists to develop

6



a more intelligent algorithm that returns blocks to mem-
ory when more free memory becomes available during
computation.

6) Although off-heap memory reduces the impact of
garbage collection (GC), it does not necessarily outper-
form disk-only caching due to serialization overhead.
Further investigation is required to assess the influence
of GC algorithms and parameters.

These conclusions highlight the importance of carefully se-
lecting the caching strategy and storage level based on specific
requirements, available resources, and the characteristics of the
data being processed.

V. CONCLUSION

Compression, Batching, Filtering, and Reordering are cru-
cial techniques in Spark that contribute to improved perfor-
mance and efficient data processing. The best configuration
for a Spark job depends on the specific requirements and
characteristics of the data and application. It is important to
consider factors such as data size, processing needs, hardware
capabilities, and trade-offs between latency and throughput.
Experimentation and tuning based on the specific use case are
necessary to determine the optimal configuration for achieving
the desired performance and efficiency goals.

VI. FUTURE WORK

By conducting in-depth analyses and experiments, re-
searchers and practitioners can uncover the most effective
combinations of parameters and strategies for each technique,
taking into account various factors such as data characteristics,
workload patterns, and resource constraints. This knowledge
can contribute to the development of guidelines and best
practices for Spark job configuration, enabling users to achieve
the highest possible performance in their data processing tasks.
Additionally, advancements in Spark itself, along with the
continuous evolution of hardware and distributed computing
technologies, may provide new opportunities for refining and
fine-tuning these techniques to achieve even better perfor-
mance gains in the future.

REFERENCES

[1] https://nvidia.github.io/spark-rapids/.
[2] https://spark.apache.org/docs/2.4.3/sql-data-sources-parquet.html.
[3] Mohd Rehan Ghazi and Durgaprasad Gangodkar. Hadoop, mapreduce

and hdfs: a developers perspective. Procedia Computer Science, 48:45–
50, 2015.

[4] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Presented as part of the 9th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 12), pages
15–28, 2012.

[5] Kaihui Zhang, Yusuke Tanimura, Hidemoto Nakada, and Hirotaka Ogawa.
Understanding and improving disk-based intermediate data caching in
spark. In 2017 IEEE International Conference on Big Data (Big Data),
pages 2508–2517. IEEE, 2017.

7

https://nvidia.github.io/spark-rapids/
https://spark.apache.org/docs/2.4.3/sql-data-sources-parquet.html

	Introduction
	Compression
	Snappy
	Gzip
	LZO
	Brotli
	LZ4
	Zstd

	Batching
	Batch Processing
	Micro-batching
	Windowed Batching
	Adaptive Batching

	Data Filtering
	Batch Processing
	Structured Streaming
	Windowed Filtering
	Partition-Level Filtering

	Data Reordering
	Batch Processing
	Streaming and Structured Streaming
	Graph Processing
	Machine Learning


	Compression
	Evaluation with TPC-DS

	Batching
	Batch Size
	Min Partitions
	Structured Streaming
	Trigger Interval
	Max Records Per Trigger
	Max Files Per Trigger


	Data Filtering
	Predicate Pushdown
	Filter Pushdown
	Partition Pruning
	Data Source Optimizations
	Caching
	NONE (NOCACHE)
	MEMORY ONLY
	OFF HEAP
	DISK ONLY
	MEMORY AND DISK


	Conclusion
	Future Work
	References

