
Performance Benchmarking of File Systems
Nikhil Pavan Kanaka

Department of Computer Science and Engineering
The Ohio State University

Columbus, Ohio
kanaka.3@osu.edu

Abstract—The proposed project aims to evaluate and compare
various file systems, analyze their performance, and determine
their applicability in different scenarios. File systems are crucial
components of computer systems, and their performance and
features significantly affect the overall functionality of the system.
The project begins with a survey of popular file systems to gain
insights into their key features and limitations. The popular
file systems, including ext4, xfs, and btrfs, are then
benchmarked to analyze their performance differences. Different
generations of the ext file-systems are then investigated and
compared to identify their strengths, weaknesses, and trade-offs.
The goal is to optimize the properties of commonly used file
systems to enhance their performance in specific use cases. The
results of the analysis show that the xfs file-system outperforms
other file systems in terms of read and write throughput in the
tested scenario. Overall, the project provides valuable insights
into the performance and applicability of different file systems
in various scenarios, enabling users to make informed decisions
while choosing a file system for their specific needs.

Index Terms—File systems, IO operations, Benchmarking

I. INTRODUCTION

Managing data storage, retrieval, and access is critical
in computer systems, and file systems play a vital role in
this process. Evaluating and comparing different file systems
available in the market is essential to identify the best fit for
various use cases and scenarios.

Currently, the most popular file systems used in operating
systems are ext4 for Linux, ntfs for Windows, and hfs+
for macOS. ext4 is a highly scalable and portable journaling
file system. On the other hand, ntfs and hfs+ offer better
access control, quotas, and encryption. hfs+ supports snap-
shots, compression, and deduplication. Other file systems, such
as xfs, are widely utilized in enterprise-level environments
for large-scale data storage and high-performance computing.
zfs is also used in enterprise-level environments for data
storage and backup. fat32 is best suited for removable
storage devices, while exFAT is more suitable for larger files
on removable storage devices.

The differences in file systems are vast, including the
features offered and the way they manage files. Study of
various features such as Journaling, Snapshots, Compression,
Encryption, Deduplication, Quotas, Access Control, Scalabil-
ity, and Portability is necessary as these can have a significant
impact on the performance of file systems and need to be
carefully considered when selecting a file system for a specific
workload. The performance of a file system can be affected
by the speed and capacity of the storage devices used, as well

as the CPU and memory configuration of the system. Under-
standing these factors is critical to optimizing the performance
of file systems for different types of workloads.

We have chosen ext4, xfs, and btrfs for benchmarking,
as they are some of the most widely used file systems in the
Linux operating system. ext4 is the default file system for
many Linux distributions, while xfs and btrfs are com-
monly used for specific purposes, such as high-performance
computing and data storage. Different generations of ext file
systems will be studied and benchmarked to understand the
trade-off between features and performance, as some features
might cause an overhead or performance difference in general.

The benchmarking will be conducted on a CentOS 7 Linux
environment using filebench, shell scripts, and tools like
fio and RAID controllers. This study will provide valuable
insights into the performance and suitability of different file
systems for specific use cases and scenarios.

II. RELATED WORK

The field of file systems has been widely studied by
researchers and engineers, and their features and limitations
are well-known. However, with the increasing demands of
data storage and processing, there is a need to evaluate file
system performance and optimize them for various types of
workloads.

Several projects have been conducted in the past to evaluate
different file systems, In a project by authors [15], btrfs,
xfs, and ext4 were compared on a single SATA drive with
a 6 Gbps link using the Linux kernel make tool. btrfs was
found to be slightly better in average seek count, while ext4
had higher throughput, little less than twice as much compared
to btrfs and xfs. Also, ext4 slightly outperformed in
average I/O operations per second. However, since this test
was meta-data intensive, the authors concluded that, in general,
these file systems had similar performance. The same authors
[15] performed the Flexible File System Benchmark (FFSB)
test, simulating a mail server that created 500,000 files in 1,000
directories with file size varying from 1 KB to 1 MB. This
test showed that ext4 had better throughput in both read
and write scenarios, while btrfs was slightly behind. The
worse results were with xfs. The final test in [15] was about
write performance, using Tiobench, which wrote to a 2,000
MB file with 1, 2, 4, 8, and 16 threads. This test showed that
btrfs ran faster than the other two file systems. In [16],
ext3, ext4, ReiserFS, jfs, xfs, and btrfs were



tested on three advanced format hard disk drives (the older 1
TB Western Digital HDD and the newer 2 TB Seagate and
3 TB Toshiba HDDs) to benchmark file system performance
against partition alignment. The authors created a fresh file
system and performed several writes and reads of files that
were 365 MB and 451 MB in size. On the Western Digital
disk, btrfs was found to be the best in reading performance,
while ext4 slightly outperformed in writing performance.
The situation was reversed on the Toshiba HDD. However, on
the Seagate HDD, btrfs was better in both aspects. In [6],
btrfs and ext4 were tested on a single disk with several
benchmarking tools. The Iozone tool showed that btrfs was
better in general for both reading and writing large size files.
The Seekwatcher tool showed that btrfs did many more
seeks than ext in terms of read performance for large files,
but btrfs had better write performance. The Seekwatcher
tool showed that btrfs did more seeks than ext4.

In another study by authors [13], the performances of
ext4, btrfs, and xfs were compared as guest file systems
under a Linux environment. The computational chemistry test
showed that ext4 had higher throughput and made fewer I/O
operations than btrfs.

File systems have been extensively studied, and their fea-
tures and limitations are well-known in the field. However,
with the rapid growth of data storage and processing demands,
there is a need to re-evaluate the performance of file systems
and optimize them.

Several projects have evaluated different file systems based
on their generalized performance. As suggested by earlier
studies, different file systems may perform better for specific
workloads, block sizes, journaling modes, and file system
options. Therefore, it is crucial to analyze, evaluate and
compare different file systems based on their feature prop-
erties and hardware configurations to study the impact on the
performance for different types of workloads and hardware
configurations.

III. XFS, BTRFS AND EXT FILESYSTEMS

ext4 is considered the standard for Linux systems, while
xfs is known for its excellent scalability and fast file creation
and deletion. btrfs may not be as fast as the other two, but
its advanced features make it an attractive option for certain
use cases.

Fig. 1. Characteristics of xfs, btrfs, and ext4 compared

The filesystems xfs, btrfs, and ext4 demonstrate
unique and discernible traits, as exemplified by the graphical
representation depicted in Fig. 1. Each of these filesystems
possesses its own set of advantages and disadvantages, making
them suitable for different use cases and environments. By
examining their distinctive characteristics, one can gain a
better understanding of which filesystem is best suited for a
particular application or scenario.

A. xfs

xfs is a file system that was originally developed at Silicon
Graphics, Inc. with the purpose of being a highly scalable and
high-performance file system. [14] The main aim of xfs is
to provide high parallel I/O performance, high scalability of
I/O threads, and high file system bandwidth [11]. In order to
achieve these objectives, xfs incorporates a number of key
characteristics, which are as follows:

Fig. 2. File allocation in XFS

• Maximum file system size and maximum file size of
nearly 8 EB.

• Journaling for metadata operations, which helps to im-
prove data consistency and ensure fast recovery in the
event of a crash.

• Partitioning into allocation groups, which are fixed-size
virtual storage regions that enable xfs to balance the
load across the file system.

• Based on extents (Fig. 2), where file blocks can have
extents of variable length, allowing for better space
utilization and improved performance.

• Delayed allocation for minimizing fragmentation and
increasing performance by avoiding unnecessary disk
writes.

• Implemented direct I/O for high throughput, and non-
cached I/O for DMA devices, which improves I/O perfor-
mance for large files and databases. Snapshot capabilities,
which allow for the creation of point-in-time copies of the
file system.

• Support for user, group, and project disk quotas on
block and inode, which help to ensure fair usage of disk
resources.

Overall, xfs is a powerful file system that is ideal for
large-scale storage applications where high performance and
scalability are critical. Its unique combination of features
makes it a popular choice for data centers and other demanding
computing environments.

2



B. btrfs

Introduced in 2007, btrfs is a modern copy-on-write
(COW) file system that is based on B-trees [15]. It was
designed to address the need for improved scalability of large
storage subsystems, while also providing advanced features
such as fault tolerance, repair and easy administration [10]
[17].

Fig. 3. Organization of btrfs file-system

The key features of btrfs include support for:
• Based on extents, which allows for more efficient use of

disk space.
• Supports a maximum file size of 16 exabytes, making it

suitable for large-scale storage needs.
• Allows for dynamic allocation of inodes, which allows

for more efficient use of disk space.
• Uses a space-efficient method of packing small files and

directories, which helps to minimize wasted space.
• Supports snapshots, subvolumes, and compression, which

allows for better data management and improved perfor-
mance.

• Optimized for use with flash storage, which allows for
better performance and longer lifespan of flash-based
storage devices.

• Fix errors on redundant files in the background, without
disrupting ongoing operations.

• Online defragmentation and offline file system checks,
which helps to maintain optimal performance and data
integrity.

• Supports quotas on the subvolume level, which allows for
better management of disk space usage.

• Built-in RAID functionality and checksums [12], which
helps to ensure data integrity and provides better fault
tolerance.

• Organized as a forest of B-trees, which allows for faster
lookups and more efficient use of disk space.

• Uses a copy-on-write update method, which provides
faster and more efficient updates to the file system. [4]

btrfs is a file system that is based on a unique type of
B-trees known as B+ trees. These B+ trees employ basic B-
tree construction, but also use a top-down update procedure,
remove leaf linking, and utilize lazy reference-counting for
space management [15]. By using the Copy-On-Write (COW)
technique, btrfs can write modified blocks to a new location
on the disk, which prevents the overwriting of old data.
Additionally, COW provides data protection and improves
performance. To accumulate updates in memory and write

them all at once to new blocks on the disk, btrfs uses a
transaction mechanism.

C. ext2

ext2 (Extended File System 2) is a second extended
file system for the Linux operating system, developed as a
replacement for the original extended file system (Ext) in 1993.
ext2 is an open source file system that uses a traditional
block-based allocation scheme, and it is still used on some
Linux distributions today. [19] Here are some of the main
features and characteristics of ext2:

• ext2 is a block-based file system, where files are stored
in fixed-size blocks of data on the disk. The file system
tracks the allocation of blocks to files using an inode
structure, which stores metadata about each file, such as
ownership, permissions, and timestamps.

• Maximum file size supported by ext2 is 2 terabytes
(TB), and the maximum file system size is 32 terabytes.

• ext2 does not have journaling support, which means that
in the event of a system crash or power failure, there is
a risk of data loss or file system corruption. However,
some tools like e2fsprogs can be used to repair the
file system in case of errors.

• Pre-allocation to avoid fragmentation of files. When a
file is created, the file system pre-allocates contiguous
blocks of data on the disk to store the file, which helps
to minimize fragmentation.

• Does not support file compression or encryption natively.
However, these features can be added through third-party
tools or using an encrypted file system like dm-crypt.

• Fast access times and low overhead, making it suitable
for use on systems with limited resources.

ext2 is a simple and reliable file system that has been used for
many years in the Linux community. Although it lacks some
of the advanced features of newer file systems like ext4 and
btrfs, it is still a popular choice for certain use cases, such
as embedded systems or systems with limited resources.

D. ext3

ext3, also known as the third extended filesystem, is a
journaled file system for Linux operating systems. It was first
introduced in 2001 and is an improvement over the original
ext2 filesystem. [3] Here are some detailed characteristics:

• Uses journaling to provide data consistency in case of
a system crash or power failure. The journal records
metadata changes before they are committed to the main
file system, which allows for quicker recovery times.

• Fully compatible with ext2, which means that ext2
partitions can be mounted as ext3 and vice versa. This
allows for easy migration between the two filesystems.

• Supports a maximum file system size of 32 TB and a
maximum file size of 2 TB.

• Inode-based filesystem, which means that each file is
represented by an inode structure that contains informa-
tion about the file’s ownership, permissions, and other
attributes.

3



• Supports the use of extents, which improves performance
by allowing for more efficient allocation of disk space.

• Uses delayed allocation to reduce fragmentation and
improve performance. This means that blocks are not
immediately allocated when a file is created, but are
instead allocated when the data is actually written to disk.

• Soft updates, a technique that improves performance by
allowing multiple disk writes to be combined into a single
operation.

• Supports online resizing, which allows for the resizing of
the filesystem while it is still mounted and in use.

• Checksums to ensure the integrity of data on the filesys-
tem.

Overall, ext3 is a reliable and stable filesystem that provides
improved data consistency and performance over its predeces-
sor, ext2.

E. ext4

ext4, short for fourth extended file system, is a widely
used Linux file system that was introduced in 2008 as an
improvement over its predecessor, ext3. It offers several
new features and improvements to enhance the performance,
scalability, and reliability of the file system. [2] [9]

Fig. 4. File allocation in ext

• Support file systems up to 1 exabyte (EB) in size and
individual files up to 16 terabytes (TB) in size, making
it suitable for high-capacity storage needs.

• Uses a journal to record file system changes, making it
less susceptible to corruption and data loss in case of
sudden power loss or system crashes.

• Several performance enhancements over ext3, including
faster file system checks and improved disk allocation al-
gorithms. It also supports delayed allocation, which helps
minimize fragmentation and improve write performance.
[1]

• Backward compatible with ext3 and can be easily
upgraded from ext3 to ext4 without losing data.

• Allows users to resize the file system while it is still
mounted and in use, without the need to unmount and
remount it.

• Multi-block allocator to improve performance when writ-
ing small files, which can reduce fragmentation and
improve read performance.

• Checksums to ensure the integrity of data stored on the
file system, which helps prevent data loss due to disk
errors or hardware failures.

• Extents to improve performance and reduce metadata
overhead, allowing it to handle large files more efficiently.

Overall, ext4 is a robust and reliable file system that offers
significant improvements over its predecessors, making it an
ideal choice for high-capacity storage needs and applications
that require high performance and reliability.

IV. METHODOLOGY AND BENCHMARKING SETUP

To achieve the objectives of this project, we employed a
variety of tools and techniques, such as filebench and shell-
based tools, to assess and contrast the efficiency and appropri-
ateness of different file systems in various situations. Filebench
[18] is a versatile file system and storage benchmarking tool
that provides a comprehensive environment for measuring and
analyzing the performance of file systems, storage devices,
and applications. It is a flexible benchmarking tool that can
emulate complex applications using various workloads. It
contains several predefined macro workloads that make it a
popular framework for file system benchmarking [5] [8]. In
addition to these workloads, Filebench also utilizes Workload
Model Language (WML), a powerful language that can specify
application behavior by encoding new workloads.

Firstly, we conducted a benchmarking survey of popular file
systems in linux, including ext4, xfs, btrfs, and different
workloads were run on appropriate partitions to record results
for I/O throughput and latency. The benchmarking process
involved disabling both the RAID controller cache and all the
HDD caches to ensure accurate results without any unwanted
optimizations by buffers or caches on the test system. Before
each test, all I/O operations were serialized to prevent any
optimizations by the Linux kernel through buffers and caches
through a tool called fio. This tool is highly configurable and
allows for fine-grained control over I/O operations, making it
suitable for various use cases.

TABLE I
HARDWARE PROFILE FOR BENCHMARK TESTING

Hardware Specification
Processor Intel Core i7-10750H Processor
Number of CPU Cores 6
Processor Speed 2.6 GHz up to 5.0 GHz
Memory (RAM) 16 GB DDR4 2933 MHz
Hard Disk Drive 1TB 15000 RPM 2.5” SATA HDD
Operating System CentOS 7.5

Testing was performed on hardware system with specifi-
cation presented in Table II. The Core i7-10750H Processor
with 6 cores and a speed of 2.6 GHz up to 5.0 GHz is
a high-performance processor suitable for running resource-
intensive applications. The 16 GB DDR4 2933 MHz RAM
allows for multitasking and faster data transfer. The 15000

4



RPM 2.5” SATA HDD (1TB) provides ample storage space
and faster data access. The operating system, CentOS 7.5, is a
widely used Linux distribution suitable for benchmarking file
systems. Overall, these specifications provide a good baseline
for evaluating the performance of file systems on the system.

TABLE II
HARD DISK DRIVE SPECIFICATION

Hardware Specification
Hard Disk Drive WD Blue 1TB SATA 6 Gb/s 15000

RPM (WD10EZEX)
Capacity 1 TB
Interface SATA 6 Gb/s
Transfer Rate to Host Up to 6 Gb/s
Cache 64 MB
Rotation Speed 15000 RPM
Average Latency 4.2 ms
Seek Time Average Read/Write 8.9 ms / 10.9 ms

The hard drive utilizes the Serial Advanced Technology
Attachment (SATA) interface, providing a transfer rate of up to
6 Gb/s to the host. It has a cache size of 64MB, which allows
for frequently accessed data to be stored in cache to enhance
access times. The disk rotates at 15000 RPM, providing a high-
speed read/write capability. The average latency of the hard
drive is less than 4.2ms, representing the time it takes for the
disk to rotate to the correct sector for reading or writing data.
The average seek time of the hard drive is 8.9ms, representing
the time it takes for the disk head to move to the correct track
for reading or writing data.

V. RESULTS

To evaluate the performance of various file systems, scripts
were written using Filebench and the system was then executed
by using a 64MB file with block size 512KB and 2048KB
for sequential and random reads and writes, as well as mixed
workloads. To avoid any unwanted optimization by the buffers
or caches on the test system, and to add different levels of
variance based on the filesystem, both the RAID controller
cache and all HDD caches were disabled. Prior to each test,
it is ensured that the Linux kernel did not perform any
optimizations by serializing I/O operations through buffers and
caches, accomplished by running

sync && echo 3 > /proc/sys/vm/drop_caches

or

systemd-sysctl vm.drop_caches=3

and doubly deleting the page cache, inodes, and dentries.
The tests excluded numerous possibilities for optimization

(such as btrfs -o, which can increase throughput by up to
30% in some cases). Prior to running the actual benchmark, an
extensive series of tests with common file system operations
such as mkdir, touch, echo, cat, dd, rm, and rmdir. These
operations were repeated multiple times with different input
values and over long loops to generate a significant amount
of data. The collected data was analyzed to ascertain the ideal
benchmarking setup for filebench.

A. Sequential Read

Sequential read throughput is the rate at which data can be
read from a storage device in a continuous manner.

TABLE III
THROUGHPUT IN MBPS FOR SEQUENTIAL READ

FileSystem 512KB block 2048KB block
ext2 303.24 447.18
ext3 428.4 518.52
ext4 353.64 560.28
btrfs 197.4 566.37
xfs 372.96 512.43

The results of Sequential Read are shown in Table III. Based
on the data, we can analyze the sequential read-throughput
performance of different file systems. The table provides the
throughput measurements in megabytes per second (MBps) for
different file systems using 512 KB and 2048 KB block sizes.

e
x
t
2

e
x
t
3

e
x
t
4

b
t
r
f
s

x
f
s

0

100

200

300

400

500

600

File System

Se
qu

en
tia

l
R

ea
d

T
hr

ou
gh

pu
t

(M
B

ps
)

512KB Block 2048KB Block

Fig. 5. Sequential Read Throughput of File Systems

The graph shown in Figure 5 illustrates the sequential write
throughput of different file systems, including ext2, ext3,
ext4, btrfs, and xfs. The data for both 512KB block and
2048KB block sizes are shown.

The results indicate that xfs has the highest sequential read
throughput for both block sizes, with 372.96 MBps for 512KB
block and 512.43 MBps for 2048KB block. ext3 and ext4
file systems also show good performance for both block sizes,

5



while btrfs has the lowest throughput for 512KB block size,
but the highest for 2048KB block size. ext2 has the lowest
throughput for both block sizes, indicating that it might not be
the best option for scenarios that require high sequential read
throughput.

B. Sequential Write

Sequential write throughput is the rate at which data can be
written to a storage device in a continuous manner.

TABLE IV
THROUGHPUT IN MBPS FOR SEQUENTIAL WRITE

FileSystem 512KB Block 2048KB Block
ext2 12.6 83.52
ext3 12.8 100.05
ext4 17.64 133.11
btrfs 15.12 77.43
xfs 18.48 159.21

The results of Sequential Write are shown in Table IV.
Based on the data, we can analyze the sequential write-
throughput performance of different file systems. The table
provides the throughput measurements in megabytes per sec-
ond (MBps) for different file systems using 512 KB and 2048
KB block sizes.

e
x
t
2

e
x
t
3

e
x
t
4

b
t
r
f
s

x
f
s

0

20

40

60

80

100

120

140

160

180

200

File System

Se
qu

en
tia

l
W

ri
te

T
hr

ou
gh

pu
t

(M
B

ps
)

512KB Block 2048KB Block

Fig. 6. Sequential Write Throughput of Various File Systems

The graph shown in Figure 6 illustrates the sequential write
throughput of different file systems, including ext2, ext3,

ext4, btrfs, and xfs. The data for both 512KB block and
2048KB block sizes are shown.

The results indicate that xfs has the highest sequential
write throughput for both block sizes, with 18.48 MBps for
512KB block and 159.21 MBps for 2048KB block. ext4 file
system also shows good performance for both block sizes,
while btrfs has the lowest throughput for 512KB block
size, but shows a moderate performance for 2048KB block
size. ext2 and ext3 file systems have lower sequential write
throughput for both block sizes, indicating that they might not
be the best option for scenarios that require high sequential
write throughput.

C. Random Read

Random read throughput is the rate at which data can be
randomly accessed and read from a storage device.

TABLE V
THROUGHPUT IN MBPS FOR RANDOM READ

FileSystem 512KB Block 2048KB Block
ext2 75.6 198.24
ext3 84 265.44
ext4 88.2 283.08
btrfs 71.4 239.4
xfs 110.88 251.16

The results of random read throughput are presented in
Table V. The table provides the throughput measurements in
megabytes per second (MBps) for different file systems using
512 KB and 2048 KB block sizes. Based on the data, we can
analyze the random read-throughput performance of different
file systems.

The graph shown in Figure 7 illustrates the sequential write
throughput of different file systems, including ext2, ext3,
ext4, btrfs, and xfs. The data for both 512KB block and
2048KB block sizes are shown.

The results indicate that xfs has the highest random read
throughput for 512KB block size with 110.88 MBps, while
for 2048KB block size, ext4 has the highest throughput
with 283.08 MBps. ext3 and ext4 file systems also show
good performance for both block sizes, while btrfs has the
lowest throughput for 512KB block size, but it performs better
for 2048KB block size. Interestingly, ext2 has the lowest
throughput for both block sizes, indicating that it might not
be the best option for scenarios that require high random read
throughput.

D. Random Write

Random write throughput measures the rate at which data
can be written to a storage device in a random manner.

The results of random write throughput are presented in
Table III. The table shows the throughput measurements in
megabytes per second (MBps) for different file systems using
512 KB and 2048 KB block sizes.

The graph shown in Figure 8 illustrates the sequential write
throughput of different file systems, including ext2, ext3,

6



e
x
t
2

e
x
t
3

e
x
t
4

b
t
r
f
s

x
f
s

0

50

100

150

200

250

300

File System

R
an

do
m

R
ea

d
T

hr
ou

gh
pu

t
(M

B
ps

)
512KB Block 2048KB Block

Fig. 7. Random Read Throughput of Various File Systems

TABLE VI
THROUGHPUT IN MBPS FOR RANDOM WRITE

FileSystem 512KB Block 2048KB Block
ext2 18.48 113.1
ext3 26.88 194.01
ext4 16.8 117.45
btrfs 12.6 70.47
xfs 23.52 153.12

ext4, btrfs, and xfs. The data for both 512KB block and
2048KB block sizes are shown.

Based on the data, we can analyze the random write
throughput performance of different file systems. The table
indicates that xfs has the highest random write throughput
for both block sizes, with 23.52 MBps for 512KB block and
153.12 MBps for 2048KB block. ext3 file system shows
good performance for both block sizes, while ext2 and
ext4 file systems have lower throughput for both block
sizes. btrfs has the lowest throughput for both block sizes,
indicating that it might not be the best option for scenarios
that require high random write throughput.

VI. DISCUSSION

We analyzed the performance of different file systems for
IO operations such as sequential read and write, and random
read and write for two block sizes: 512KB and 2048KB. Our

e
x
t
2

e
x
t
3

e
x
t
4

b
t
r
f
s

x
f
s

0

50

100

150

200

250

File System

W
ri

te
T

hr
ou

gh
pu

t
(M

B
ps

)

512KB Block 2048KB Block

Fig. 8. Random Write Throughput of Various File Systems

results indicate that the performance of file systems varies
significantly based on the workload and configuration used.

For sequential read throughput, xfs performs the best
for both block sizes, while btrfs performs the worst. For
sequential write throughput, ext4 performs the best for both
block sizes, while ext2 performs the worst. For random read
throughput, xfs performs the best for both block sizes, while
ext2 performs the worst. For random write throughput, ext3
performs the best for both block sizes, while btrfs performs
the worst.

Overall, the results suggest that xfs and ext4 are the best-
performing file systems for sequential and random read and
write operations, while ext2 and btrfs [7] are the least
performing.

Looking at the numbers for ext2, ext3, and ext4, we
can see that there are some differences between the three file
systems in terms of their performance for different types of
operations. For sequential read throughput, ext3 and ext4
both perform better than ext2, with ext4 having the highest
numbers. For sequential write throughput, ext4 performs
better than ext2 and ext3, with the highest numbers in the
2048KB block size.

For random read throughput, ext4 has the highest numbers
in both block sizes, followed closely by xfs. For random write
throughput, ext3 has the highest numbers in both block sizes,
followed by xfs. It’s interesting to note that ext3 performs

7



better than ext4 in random write throughput, which could
be due to ext3 having a more stable and mature codebase
compared to ext4, which is still being actively developed.

Overall, as expected, ext4 appears to be the best performer
among the three file systems, with high numbers in sequential
read and write throughput, as well as random read throughput.
However, it’s important to consider the specific use case
and workload requirements when selecting a file system,
as performance can vary depending on the application and
hardware configuration.

VII. LIMITATIONS

Throughout the project, we encountered some assumptions,
limitations, and constraints. One significant limitation was the
limited scope of the study, as we only focused on a few file
systems commonly used in the Linux operation system. The
study’s results may not be generalized for other file systems
not included in the study. Another limitation was the hardware
configurations, which may not represent all possible hardware
configurations used in different scenarios. Additionally, the
workload used in the study may not represent all possible
workloads in different scenarios.

Despite these limitations, we believe that this project pro-
vides valuable insights into the performance of different
file systems and their applicability in different scenarios.
Moreover, our methodology can be extended to evaluate the
performance of other file systems not included in this study,
providing a foundation for future research on file systems’ per-
formance and optimization. In addition, we experimented with
different configurations based on the workload and hardware
used to optimize file system performance. Our results show
that the optimal configuration for a file system depends on the
specific use case and workload and that tweaking the config-
uration can result in significant performance improvements.

VIII. CONCLUSION

By conducting a comprehensive evaluation and comparison
of popular file systems, analyzing their key features and
limitations, and identifying the best-performing file systems
for different types of IO operations, this project has provided
valuable insights into selecting the optimal file system for their
specific use case and workload.

While this project has identified several strengths, such as
the comprehensive analysis of popular file systems, there are
also limitations to acknowledge, such as the limited set of
hardware and file systems evaluated. However, this project
suggests several avenues for future research, such as expanding
the benchmarking survey to include more file systems and
workload types, exploring the impact of different file system
options on performance in more detail, and evaluating the
impact of different hardware configurations on file system
performance.

Overall, this project provides a foundation for future re-
search to improve system functionality and performance. By
understanding the factors that influence the performance of file
systems, users can make informed decisions when selecting the
optimal file system for their specific use case and workload.

IX. FUTURE SCOPE

The findings from this project have important implications
for future studies in two key ways. Firstly, this work sheds light
on the performance characteristics of various file systems and
their suitability in diverse settings. Secondly, the project serves
as a fundamental basis for future investigations on the effects
of different file systems on data processing performance, en-
compassing the distinction between CPU and GPU processing.
This investigation may lead to the discovery of novel methods
to optimize file system performance and enhance the overall
functionality of computer systems.

REFERENCES

[1] Ext4 disk layout. https://ext4.wiki.kernel.org/index.php/Ext4 Disk
Layout. Accessed: 10.4.2016.

[2] Ext4, red hat enterprise linux 6 storage administration guide.
https://access.redhat.com/documentation/en-US/Red Hat Enterprise
Linux/6/html/Storage Administration Guide/ch-ext4.html. Accessed:
10.4.2016.

[3] Mingming Cao, Theodore Y Tso, Badari Pulavarty, Suparna Bhat-
tacharya, Andreas Dilger, and Alex Tomas. State of the art: Where
we are with the ext3 filesystem. In Proceedings of the Ottawa Linux
Symposium (OLS), pages 69–96. Citeseer, 2005.

[4] Jianping Chen, Jiahua Wang, Zhiqiang Tan, and Changsheng Xie.
Recursive updates in copy-on-write file systems - modeling and analysis.
Journal of Computers, 9(10):2342–2351, oct 2014.

[5] Tobias Hirt. KVM - The Kernel-Based Virtual Machine. http://www.cs.
hs-rm.de/∼linn/fachsem0910/hirt/KVM.pdf, 2010.

[6] Mesfin Tesfaye Kebede. Performance comparison of btrfs and ext4
filesystems. Master’s thesis, Network and System Administration Oslo
And Akersus University College Of Applied Science, 2012.

[7] Jelena Kljaji’c, Nikola Bogdanovi’c, Milan Nankovski, Mihailo Tončev,
and Branislav Djordjevi’c. Performance analysis of 64-bit ext4, xfs
and btrfs filesystems on the solid-state disk technology. INFOTEH-
JAHORINA, 15:563–566, 2016.

[8] Duc Le, Haibo Huang, and Hai Wang1. Understanding performance
implications of nested file systems. In FAST’12 Proceedings of the
10th USENIX conference on File and Storage Technologies, pages 1–
13. USENIX Association, 2012.

[9] Andreas Mathor, Mingming Cao, Suparna Bhattacharya, Andreas Dilger,
Alexander Tomas, and Laurent Vivier. The new ext4 filesystem: current
status and future plans. In Proceedings of the 2007 Ottawa Linux
Symposium, volume 2, pages 21–33, 2007.

[10] Oracle. All About btrfs. https://docs.oracle.com/cd/E37670 01/E37355/
html/ol about btrfs.html, 2016. [Accessed: 10-Apr-2016].

[11] Oracle. All About xfs. https://docs.oracle.com/cd/E37670 01/E37355/
html/ol about xfs.html, 2016. [Accessed: 10-Apr-2016].

[12] Oracle. Btrfs, Getting Started. http://www.oracle.com/technetwork/
articles/servers-storage-admin/gettingstarted-btrfs-1695246.html, 2016.
[Accessed: 10-Apr-2016].

[13] Alexey Vladimirovich Ostroukh and Andrey Salniy. Research of per-
formance linux kernel file systems. International Journal of Advanced
Studies (iJAS), 5(2):12–17, 2015.

[14] Red Hat. Red Hat Enterprise Linux 6 Storage Administration
Guide. https://access.redhat.com/documentation/en-US/Red Hat
Enterprise Linux/6/html/Storage Administration Guide/ch-xfs.html,
2016. [Accessed: 10-Apr-2016].

[15] Ohad Rodeh, Josef Bacik, and Chris Mason. The linux b-tree filesystem.
Trans. Storage, 9(3):9, Aug 2013.

[16] Roderick W. Smith. Linux on 4kb-sector disks: Practical advice. http:
//www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/, 2016.
Accessed: 10.4.2016.

[17] The Btrfs project. Btrfs. https://btrfs.wiki.kernel.org/index.php/Main
Page, 2016. [Accessed: 10-Apr-2016].

[18] The Filebench project. Filebench. http://filebench.sourceforge.net/wiki/
index.php/Filebench, 2016. [Accessed: 05-Apr-2016].

[19] KC Wang and KC Wang. Ext2 file system. Systems Programming in
Unix/Linux, pages 301–356, 2018.

8

https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch-ext4.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch-ext4.html
http://www.cs.hs-rm.de/~linn/fachsem0910/hirt/KVM.pdf
http://www.cs.hs-rm.de/~linn/fachsem0910/hirt/KVM.pdf
https://docs.oracle.com/cd/E37670_01/E37355/html/ol_about_btrfs.html
https://docs.oracle.com/cd/E37670_01/E37355/html/ol_about_btrfs.html
https://docs.oracle.com/cd/E37670_01/E37355/html/ol_about_xfs.html
https://docs.oracle.com/cd/E37670_01/E37355/html/ol_about_xfs.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/gettingstarted-btrfs-1695246.html
http://www.oracle.com/technetwork/articles/servers-storage-admin/gettingstarted-btrfs-1695246.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch-xfs.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/ch-xfs.html
http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/
http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/
https://btrfs.wiki.kernel.org/index.php/Main_Page
https://btrfs.wiki.kernel.org/index.php/Main_Page
http://filebench.sourceforge.net/wiki/index.php/Filebench
http://filebench.sourceforge.net/wiki/index.php/Filebench

	Introduction
	Related work
	XFS, BTRFS and EXT filesystems
	xfs
	btrfs
	ext2
	ext3
	ext4

	Methodology and Benchmarking Setup
	Results
	Sequential Read
	Sequential Write
	Random Read
	Random Write

	Discussion
	Limitations
	Conclusion
	Future Scope
	References

