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Research Contributions

• Identified Limitations of LLMs: Focused on reasoning capabilities and their challenges.

• Explored Reasoning Mechanisms and Grokking: Current approaches and Insights.

• Reasoning Dataset: Centered on comparison tasks.

• Conducted Experimental Evaluation: Tested multiple models to assess grokking performance.

• Analyzed Factors Influencing Grokking: Dataset Parameters that impact generalization.

• Identified Optimal Configurations for Reasoning: Insights to enhance grokking.
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LLMs: Revolutionizing NLP, Yet Facing Challenges

The Rise of LLMs:
LLMs have transformed natural language understanding and generation.

Challenges in Reasoning:

• Despite their successes, LLMs face limitations in tasks that demand logical 
deduction, systematic reasoning, and generalization.

•  Reasoning tasks involve understanding complex relationships, making 
inferences, and applying knowledge to novel contexts.

•  These tasks often expose weaknesses, leading to issues like hallucinations and 
inaccurate outputs, even when the language is fluent and coherent.
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Research Motivation

Need for Systematic Exploration:
Addressing LLM limitations in reasoning is crucial for advancing their utility.

Research Goal:

• To systematically evaluate, improve, and understand reasoning capabilities in 
LLMs. This involves designing reasoning-specific datasets, experimenting with 
various models and analyzing performance across configurations.

• To investigate gaps in understanding reasoning within LLMs, this research will 
explore the nuances of grokking and generalization.
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Existing Methods

Focused on enhancing reasoning capabilities without delving into the model's 
internal reasoning mechanisms or explicitly improving its underlying components.

Can be categorized into:

• Parameter-Frozen Paradigm

• Parameter-Tuning Paradigm

• Hybrid Approaches
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Parameter-Frozen Paradigm

Utilizes LLMs without altering internal parameters, focusing on strategic prompt engineering.

• Zero-Shot Learning:

• Models perform tasks without prior task-specific training.

• Zero-Shot Chain-of-Thought1 (CoT) prompting generates step-by-step reasoning via simple 
prompts like "Let's think step by step”.

• Demonstrated success in arithmetic and symbolic reasoning tasks.

• Few-Shot Learning:

• Incorporates task-specific examples in prompts.

• Few-Shot CoT Prompting2 (Wei et al., 2022) provides guided reasoning processes.

• Enhances performance in complex reasoning tasks, requiring careful selection of exemplars.

1. Kojima, T., Gu, S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large Language Models are Zero-Shot Reasoners
2. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E. H., Le, Q. V., & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models.
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Parameter-Tuning Paradigm

Adjusting the model parameters to enhance their performance on specific reasoning tasks.

• Full-Parameter Tuning: Modifying all the parameters of an LLM to specialize it for particular tasks.

• WizardMath1: Fine-tuned for mathematical reasoning using Reinforcement Learning with 
Evol-Instruct Feedback (RLEIF).

• MAmmoTH2: On MathInstruct, combining CoT and program-of-thought rationales.

• Parameter-Efficient Tuning: Aim to adapt LLMs with minimal changes to the model’s parameters.

• Low-Rank Adaptation (LoRA) enables fine-tuning with limited resources.

• LLM-Adapters3: Framework that integrates various adapters into LLMs.

1. Luo, H., Sun, Q., Xu, C., Zhao, P., Lou, J., Tao, C., Geng, X., Lin, Q., Chen, S., & Zhang, D. (2023). WizardMath: Empowering mathematical reasoning for large language models via reinforced evol-instruct.
2. Yue, X., Qu, X., Zhang, G., Fu, Y., Huang, W., Sun, H., Su, Y., & Chen, W. (2023). MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning.

3. Hu, Z., Wang, L., Lan, Y., Xu, W., Lim, E.-P., Bing, L., Xu, X., Poria, S., & Lee, R. K.-W. (2023). LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of Large Language Models.
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Hybrid Approaches

Combines LLM generative capabilities with 
symbolic solvers1 for precise logical reasoning.

• LLMs as Translators:
• Converts natural language to symbolic 

representations for processing by tools.
• Reduces errors like hallucinations and 

provides verifiable reasoning chains.

• Challenges:
• Errors in translation or symbolic 

execution can lead to failures.
• Symbolic solvers require explicit 

premises, limiting their ability to infer 
implicit relationships.

1. Zhang, Y., Chen, S., & Kambhampati, S. (2023). A closer look at tool-based logical reasoning with LLMs: The choice of tool matters
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Challenges

Existing methodologies fall short of addressing fundamental questions about improving a model's 
capability to reason. 

Key limitations:

• Opaque Reasoning Processes: Lack of Interpretability

• Over-Reliance on External Tools

• Dataset Constraints

• Focus on Fundamental Reasoning
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Grokking

Grokking describes the phenomenon where transformers generalize effectively long after 
overfitting. Models leveraging grokking excel at out-of-distribution (OOD) tasks, demonstrating 
robust generalization capabilities.

Introduced by Power et al. (2022)1,

Liu et al., (2022)2: Explored structured representations through prolonged training.

Murty et al., (2022)3: how transformer computations align with hierarchical encodings. 

Nanda et al., (2023)4: Proposed metrics to quantify grokking progress.

Murty et al., (2023)5: Structural grokking, emphasizing hierarchical representations.

Furuta et al., (2024)6: Investigated modular arithmetic tasks.

Wang et al., (2024)7: Identified generalizing circuits as structured pathways within transformers.

1. Power, A., Burda, Y., Edwards, H., Babuschkin, I., & Misra, V. (2022). Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets.
2. Liu, Z., Kitouni, O., Nolte, N., Michaud, E. J., Tegmark, M., & Williams, M. (2022). Towards Understanding Grokking: An Effective Theory of Representation Learning

3. Murty, S., Sharma, P., Andreas, J., & Manning, C. D. (2022). Characterizing Intrinsic Compositionality in Transformers with Tree Projections.
4. Nanda, Neel, et al. Progress measures for grokking via mechanistic interpretability.

5. Murty, S., Sharma, P., Andreas, J., & Manning, C. D. (2023). Grokking of Hierarchical Structure in Vanilla Transformers.
6. Furuta, H., Minegishi, G., Iwasawa, Y., & Matsuo, Y. (2024). Interpreting Grokked Transformers in Complex Modular Arithmetic.

7. Wang, B., Yue, X., Su, Y., & Sun, H. (2024). Grokked Transformers are Implicit Reasoners: A Mechanistic Journey to the Edge of Generalization.
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Objectives

• Investigate Grokking in Reasoning Tasks:
Examine the phenomenon of grokking in state-of-the-art LLMs, focusing on identifying the 
conditions that enable it.

• Evaluate Reasoning Capabilities:
Compare the reasoning and grokking performance of multiple LLMs, including GPT, LLaMA, RWKV, 
and Mamba, specifically for tasks requiring logical comparison and deduction.

• Dataset Analysis:
Explore the influence of dataset characteristics on grokking speed and effectiveness in reasoning.

• Understand Generalization Limitations:
Identify the constraints of current LLMs in reasoning tasks, particularly their ability to generalize 
beyond the training data. Provide insights for improving reasoning capabilities in LLMs.
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Scope and Focus

• Focused on Reasoning Tasks:
The study is limited to reasoning tasks, emphasizing logical comparison and deduction.

• Experimental Boundaries:
The research is confined to analyzing grokking behavior under different dataset designs and model 
configurations. The study focuses on understanding how these factors influence grokking behavior.

• Prioritizing Common Ground:
When comparing both model performance and dataset design, the research prioritizes identifying a 
common ground to ensure fair and meaningful comparisons. 
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Methodology
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Reasoning Dataset

• Custom datasets were curated with controlled variations.

Model Experiments

• Experiments were conducted using open-source LLMs, evaluating their architectural 
performance and behaviour under identical conditions to ensure fair comparisons.

Controlled Analysis

• Models were assessed across consistent experimental setups, highlighting differences in 
their grokking dynamics.

• Factors such as training duration, hyperparameter configurations, and architectural choices 
were analyzed individually to provide targeted insights into their respective contributions.



Dataset Design

1. Wang, B., Yue, X., Su, Y., & Sun, H. (2024). Grokked Transformers are Implicit Reasoners: A Mechanistic Journey to the Edge of Generalization.
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• Comparison reasoning task is chosen as it effectively demonstrated grokking1.

• Evaluate entities based on attribute values to determine relationships.

Example: Compare "Alice (30 years)" and "Bob (25 years)" → Alice > Bob for attribute age.

Parameter Controls

• Number of Entities: Total entities in the dataset. Scales entity pairs quadratically.

• Number of Attributes: Total attributes in the dataset. More attributes increase dataset richness.

• Values per Attribute: Range of possible values for attributes.

• Inferred to Atomic Ratio: Ratio between inferred and atomic facts.

• In-Domain to Out-of-Domain Ratio: Ratio of in-domain to out-of-domain entities.



Dataset Configuration
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To enable a meaningful comparison of reasoning performance across models, experiments were 
conducted with consistent dataset configurations.

Number of Entities: 1000

Number of Attributes: 20

Values per Attribute: 20

In-domain to Out-of-domain Ratio: 0.9

Test Dataset Size: 3000

Inferred to Atomic Fact Ratio: 12.6



Model Configuration
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Architecture: Comparable to GPT-2 Small (8 layers).

Batch Size: 512

Precision: fp16 (half-precision).

Sequence Length: Capped at 10 tokens.

Weight Decay: 0.1

Dropout: No

Gradient Accumulation: Single-step



GPT2
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Demonstrated outstanding performance on the 
comparison task.

Key Observations
• Achieved high accuracy in both in-distribution 
(ID) and out-of-distribution (OOD) inference, 
after extensive overfitting. (~2,270e)
• Highlights a nuanced progression where 
overfitting enhances OOD generalization rather 
than impeding it.



LLama
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LLaMA is also a transformer-based large language model. It employs multi-head self-attention 
mechanisms and modular optimizations.

Key Architectural Differences:

• Tokenization: SentencePiece vs. GPT’s Byte Pair Encoding (BPE).

• Normalization: Post-layer normalization instead of GPT’s pre-layer normalization.

• Positional Encoding: Rotary Positional Embeddings (RoPE) for positional context.

Multi-layer attention and residual connections allow efficient flow of information across layers, 
enabling compositional reasoning.



Llama Results
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• While not so different from GPT architecture, 
LLaMA exhibited slower convergence.

• Delayed spike in OOD accuracy way after 
perfect ID accuracy was observed. (~8,072e)

• Highlights architectural components that may 
influence reasoning and generalization.

• Further study of LLaMA vs GPT can identify 
components critical for grokking.

• Incorporating elements from GPT might 
address observed limitations in speed.



RWKV
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RWKV is a hybrid large language model that combines elements of RNNs and Transformers

Key Architectural Features:

• Sequential Token Processing, while maintaining a memory-like state for long-term dependencies.

• Time-Mixing: Captures sequential relationships across tokens.

• Channel-Mixing: Extracts meaningful features from the input.

• Log-Space Attention: Mimics the long-range capabilities of transformers but more efficient.

Motivation:

• Hybrid Design: Allows parameter sharing across time steps focusing on temporal dependencies.

• Potential for Generalization: Implicit memory mechanisms may retain and reuse knowledge.

• Scalability: Its sequential and efficient nature offers promise for scaling up models while 
managing computational costs. Understanding RWKV’s performance highlights critical trade-offs 
between efficiency and reasoning depth.



RWKV Results
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• RWKV did not achieve perfect grokking under 
tested conditions, unlike GPT and LLaMA.

• OOD accuracy improved marginally at later training 
stages but quickly plateaued.

• Increased training duration may enable better 
pattern recognition for reasoning tasks.

• Enhancing cross-layer knowledge sharing may 
improve systematic generalization.

• RWKV’s design offers a computationally efficient 
alternative to transformers. It serves as a valuable 
platform for exploring reasoning and implicit 
memory.



Mamba
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Mamba is a large language model (LLM) designed to achieve lightweight and efficient computations.

Introduces a simplified attention mechanism that reduces computational complexity. Unlike GPT’s dense 
self-attention layers, Mamba employs mechanisms inspired by or state-space models.

Key architectural features:

• Tokenization: Similar to WordPiece but opts for simplicity over GPT's BPE or LLAMA’s SentencePiece.

• Positional Encodings: Computationally simpler but less effective.

• Lightweight feed-forward networks (FFNs): Designed for efficiency but can limit learning stability.

Motivation:

• Mamba incorporates recurrent-inspired designs and modular connections to facilitate efficient 
information sharing across layers and improved memory utilization. 

•The lightweight design of Mamba also offers practical advantages for overtraining.



Mamba Results
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• Mamba achieved rapid improvement in atomic 
fact accuracy. However, performance fluctuated 
before stabilizing, indicating instability in learning 
basic patterns. Unlike atomic facts, inference 
accuracy never stabilized, highlighting limitations.

• The findings suggest that while Mamba excels at 
lightweight tasks, its design struggles to handle 
deep reasoning and systematic generalization.

• Mamba is a relatively new architecture, and its 
configuration may not be fully optimized. 

• Further experiments with a mature codebase and 
optimized training strategies are essential to 
assess its full potential.



Key Dataset Parameters Influencing Grokking
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To enable meaningful comparison of reasoning performance across various dataset-related 
parameters, experiments were conducted using a consistent model configuration: GPT-2 (8 layers)

Validated Factors (from Prior Studies):

• Dataset Size: The absolute size of the training dataset has minimal impact. 

• Atomic to Inferred ratio: The speed at which a transformer model generalizes correlates 
strongly with the ratio of inferred facts to atomic facts in the training data. A higher ratio 
accelerates the grokking process, enabling the model to achieve generalization more rapidly.

Novel Contributions

• Attribute values: The sparsity of attribute values affect the model’s ability to reason.

• Number of Entities: Increased complexity challenges the model's ability to comprehend.



Attribute Values
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• Refers to the possible range of values that 
attributes can take.

• For instance, if attribute age range is 30, the 
age attribute could range between different 
values, such as 0-29. 

• Higher attribute value ranges led to a faster 
spike in Out-Of-Distribution (OOD) accuracy 
but delayed grokking.

• Lower attribute value ranges enable faster 
generalization, while larger ranges slow down 
the grokking process.



Entities
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• The study was conducted by keeping 
the dataset size constant while varying 
the entities-to-attributes ratio.

• When the number of entities was less 
than 400, the model consistently failed 
to grok.

• This indicates that a minimum 
threshold of entities is required for the 
model to effectively identify patterns 
and relationships, enabling successful 
learning and generalization. 



Summary
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This study explores how various model architectures respond to reasoning tasks.

• GPT and LLaMA demonstrated grokking capabilities, LLaMA at a slower rate than GPT.

• RWKV and Mamba failed to grok the task entirely.

Also explored the dataset factors influencing grokking.

• Entities: Minimum threshold of entities is required for the model to grok.

• Attribute values: Lower attribute value ranges enabled faster generalization.

By exploring various configurations of these parameters within GPT, the study identifies optimal 
conditions for successful grokking, offering insights into the mechanisms driving reasoning and 
generalization in language models.



Future Research
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Architectural and Training Innovations:
Develop methods to accelerate grokking while maintaining reasoning quality.

Mechanistic Interpretability:
Identify components or layers in LLMs that contribute to reasoning.

Scaling to Real-World Applications:
Adapt grokked models to effectively handle real-world datasets and benchmarks.

In-Context Learning on Grokked Systems:
Investigate the effectiveness of in-context learning for reasoning tasks in grokked models.



Additional Experiments: Model Size

29

• Experiments conducted using various 
configurations of GPT-2 (2, 4, 6, and 8 
layers) demonstrated that smaller 
models grokked slower.

• As the number of layers increased, 
the rate of grokking slightly improved. 

• Larger models exhibit better capacity 
to identify patterns and achieve 
generalization.



Thank you!
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